Performance of Møller-Plesset second-order perturbation theory and density functional theory in predicting the interaction between stannylenes and aromatic molecules

نویسندگان

  • Piotr Matczak
  • Sławomir Wojtulewski
چکیده

The performances of Møller-Plesset second-order perturbation theory (MP2) and density functional theory (DFT) have been assessed for the purposes of investigating the interaction between stannylenes and aromatic molecules. The complexes between SnX2 (where X = H, F, Cl, Br, and I) and benzene or pyridine are considered. Structural and energetic properties of such complexes are calculated using six MP2-type and 14 DFT methods. The assessment of the above-mentioned methods is based on the comparison of the structures and interaction energies predicted by these methods with reference computational data. A very detailed analysis of the performances of the MP2-type and DFT methods is carried out for two complexes, namely SnH2-benzene and SnH2-pyridine. Of the MP2-type methods, the reference structure of SnH2-benzene is reproduced best by SOS-MP2, whereas SCS-MP2 is capable of mimicking the reference structure of SnH2-pyridine with the greatest accuracy. The latter method performs best in predicting the interaction energy between SnH2 and benzene or pyridine. Among the DFT methods, ωB97X provides the structures and interaction energies of the SnH2-benzene and SnH2-pyridine complexes with good accuracy. However, this density functional is not as effective in reproducing the reference data for the two complexes as the best performing MP2-type methods. Next, the DFT methods are evaluated using the full test set of SnX2-benzene and SnX2-pyridine complexes. It is found that the range-separated hybrid or dispersion-corrected density functionals should be used for describing the interaction in such complexes with reasonable accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of intermolecular interaction between Cl2 and HX (X=F, Cl and Br): An ab initio, DFT, NBO and AIM study

The character of the intermolecular interactions in Cl2-HX (X =F, Cl and Br) complexes has been investigated by means of the second-order Möller–Plesset perturbation theory (MP2) and the density functional theory (DFT) calculations. The results show that there are two types of lowest interaction potential equilibrium structures in the interactions between Cl2 and HX: X∙∙∙Cl type geometry and hy...

متن کامل

Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies

Related Articles Basis set convergence of explicitly correlated double-hybrid density functional theory calculations J. Chem. Phys. 135, 144119 (2011) An explicitly correlated local coupled cluster method for calculations of large molecules close to the basis set limit J. Chem. Phys. 135, 144117 (2011) An efficient local coupled cluster method for accurate thermochemistry of large systems J. Ch...

متن کامل

Dispersion-corrected Møller-Plesset second-order perturbation theory.

We show that the often unsatisfactory performance of Møller-Plesset second-order perturbation theory (MP2) for the dispersion interaction between closed-shell molecules can be rectified by adding a correction Delta C(n)/R(n), to its long-range behavior. The dispersion-corrected MP2 (MP2 + Delta vdW) results are in excellent agreement with the quantum chemistry "gold standard" [coupled cluster t...

متن کامل

Auxiliary Basis Sets for Density Fitting Mp2 Calculations: Correlation Consistent Basis Sets for the 5d Elements Hf-pt

Auxiliary basis sets specifically matched to the correlation consistent cc-pVnZ-PP, ccpwCVnZ-PP, aug-cc-pVnZ-PP and aug-cc-pwCVnZ-PP orbital basis sets (used in conjunction with pseudopotentials) for the 5d transition metal elements Hf-Pt have been optimized for use in density fitting second-order Møller-Plesset perturbation theory and other correlated ab initio methods. Calculations of the sec...

متن کامل

Development of efficient computational techniques and codes for second-order Møller–Plesset perturbation calculation of extended systems

Electronic structure theory such as ab initio molecular orbital (MO) theory is the powerful tool in elucidating chemical phenomena such as electronic states, molecular structures, properties, and reaction mechanisms. The high-level quantum chemical calculations excellently reproduce the properties for small molecules in the same or better accuracy with the experiments. However, the computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2015